
Understanding Scientific Reasoning 

Research Process in Biometrics and Operations Research 

Prof. Dr. Tianjian Cao 

Simulation Optimization Lab  

Northwest A & F University 

cao@nwsuaf.edu.cn 



Outline 

 Main Steps or Phases in Research Process 

 

 The Nature of Causal Models and Their Testing 

 

 Examples from Biometrics and Operations Research 



Main Steps/Phases in Research Process 

 Giere’s six-step programs 

 

 

 A guide-dog approach 

 



Giere’s six-step programs 

 Giere’s six-step programs for evaluating theoretical 

hypotheses 

 

 Giere’s six-step programs for evaluating statistical 

hypotheses 

 

 Giere’s six-step programs for evaluating causal 

hypotheses 



Evaluating theoretical hypotheses 

 Fig. 1 Giere’s six-step 

program for evaluating 

theoretical hypotheses 

(Giere 1991, p.38-39) 



Theoretical, con't 

 The first step is to identify the real world object.  

 

 And the second step is to identify a theoretical model 

used to represent the real world.  

 

 Step 3 identifies data that obtained by observation or 

experiment involving the real world objects of study.  

 

 Based on the model, the fourth step, a prediction is 

conducted, the prediction says what data should be 

obtained if the model actually provides a good fit to the 

real world.  



Theoretical, con't 

 The next part is evaluation. Giere (1991) divided the 

evaluation part into two steps.  

 

 The first step of evaluation part answers whether or 

not the data agree with the prediction.  

 If not, conclude that the data do not fit the real world. 

If the data do agree with the prediction, go on the 

next evaluation step.  

 



Theoretical, con't 

 The second evaluation step checks the validity of 

prediction by answering the following question:  

 “Was the prediction likely to agree with the data even 

if the model under consideration does not provide a 

good fit to the real world?”  

 

 If the answer is “no,” then the data do provide good 

evidence that the model does fit the real world.  

 

 If the answer is “yes,” then the data are inconclusive 

regarding the fit of the model to the real world. 



Evaluating statistical hypotheses 

 Fig. 2 Giere’s six-

step program for 

evaluating statistical 

hypotheses (Giere 

1991, p.128, p.186-

187) 



Statistical, con't 

 Firstly, the real world population which is the intended 

object of the study should be identified.  

 

 Secondly, we need to identify the real world sample and 

the particular data.  

 

 The third step is to identify the statistical model of the 

population, the relevant variables and the values of these 

variables.  

 

 Step 4, random sampling, provides answers to the 

question – “How well does a random sampling model 

represent?” 



Statistical, con't 

 By evaluating the strength of the correlation, step 5 

analyzes the random sampling model, whether or not it is 

applicable.  

 In this step, the statistical model in step 3 is checked 

if a correlation is possible.  

 

 Finally, the last step summarizes the statistical 

hypotheses, particularly by reviewing analyses in steps 4 

and 5. 



Evaluating causal hypotheses 

 Fig. 3 Giere’s six-

step program for 

evaluating causal 

hypotheses (Giere 

1991) 



Causal, con't 

 As shown in Fig. 3, there are three types of experimental 

designs, i.e.,  

 prospective,  

 retrospective,  

 and randomized experimental designs.  

 

 Compared to prospective and retrospective designs, 

randomized experimental designs provide the best 

evidence for the existence of a genuine causal factor 

(Giere 1991). 



A guide-dog approach 

 Theory construction 

 

 Data generation 

 

 Data analysis 

 

 Scientific inference 



A guide-dog approach, con't 

 In research philosophy, research methodology can be 

grouped as  

 empiricism, inductivism, and hypothetism.  

 Arguments among hypothetical-deductive approach, 

inductive or empirical approach, and anti-empiricism have 

been raised in the past decades.   

 Compared to inductivism and hypothetism, empiricism 

has been a common methodological background 

assumption in ecology.  

 The hypothetical-deductive method was  widely applied in 

the modern ecology (Tuomivarra et al. 1994). 



A guide-dog approach, con't 

 “In ecology the central problem is not the lack of theory or 

the lack of data but the lack of research able to link them 

systematically and critically.” (Tuomivaara et al. 1994).  

 By accepting the criticism of the anti-empiricists, 

Tuomivaara et al. (1994) developed an approach of 

research philosophy called Guide-Dog Approach for 

ecology research.  

 This approach formulates the research process as an 

integrated whole consisting of conceptual and theoretical 

thinking, mathematical modelling, designing of 

instruments and experiments, data generation, statistical 

analysis, and scientific inference. 



Theory construction 

 The aim of theory construction is to conceptualize the 

ecological theory using the method of  

 

 idealisation  

 and concretisation   

 

 



Theory construction, con't 

 The first step is to conceptualize the bases of the 

research problem and the ideas.  

 

 The second step is to identify the basic elements and 

relationships of the research object.  

 

 The third step is to enrich the core model with additional 

elements and relationships.  

 

 In the fourth step the theoretical model is solved by 

applying the relevant analytical or numerical calculation 

methods.  



Data generation 

 In data generation, whether or not the theoretical model 

corresponds to its object is tested (Tuomivaara et al. 

1994).  

 

 Several problems should be taken into account in the data 

generation process, such as  

 operationalization,  

 quantification and measurement,  

 design of the arrangements  

 or setting up data generation,   

 and analysis.  

 



Data generation, con't 

 The first step results in a conceptual model in which the 

basis of the theoretical model and all factors are 

conceptualised or identified.  

 The second step is to simplify the conceptual model, and 

to formalise it into the form of a core model of data 

generation.  

 In the third step the operational model takes additional 

concepts and assumptions concerning instrumentation 

and arrangements into account.  

 By fixing values of parameters and initial conditions, a 

special case model of data is developed in the fourth step. 



Data analysis 

 In ecology statistical analysis is widely used for data 

analysis.  

 

 Distributional assumptions and independence of 

observations are key factors in the statistical analysis.  

 

 Because these factors may affect the precision of the 

estimates. 

 

 



Data analysis, con't 

 According to Tuomivaara et al. (1994), the critical point in 

the evaluation of the statistical model is the amount of 

error variation.  

 

 Increasing sample sizes may easily reduce error variation.  

 

 At the mean time, however, the relative efficiency of 

additional observations decreases.  

 

 A more efficient way is to identify and eliminate the 

sources of variation. 



Scientific inference 

 Scientific inference means the process of drawing 

conclusions from results concerning the validity of theory 

(Tuomivaara et al. 1994).  

 

 According to Popper (1959,1963,1983), the more severe 

the test, the higher the degree of evidential support the 

data gives to the theory.  

 



Scientific inference, con't 

 Firstly, the correctness of theories is strongly supported 

by evidential data and other accepted knowledge;  

 Secondly, the theories should be clearly, strongly and 

definitely formulated, and the theories must be severely 

tested so that we can find actual data;  

 Thirdly, before conclusions, possible sources of error in 

data generation should be critically analysed;  

 Finally, we should realise that all models, theories, data, 

tests and conclusions in science remain conjectural or 

tentative by their nature. 
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The nature of causal models 

 Correlation or causation 

 

 Deterministic or stochastic 

 

 Individuals and populations 

 

 Effectiveness of causal factors 

 



Correlation or causation 

“One of the most common mistakes in statistical 

reasoning is inferring the existence of a causal connection 

from a known correlation.” (Giere 1991). 

 In fact, causation and positive correlation are very 

different.  

 Correlation is symmetrical relationship, in contrast, cau 

 A symmetrical relationship means, “if A is positively 

correlated with B, then B will be positively correlated with 

A, and vice versa.”  

 However, “if being an A causes you to be a B, it does 

not follow that being a B would cause you to be an A.” 

 



Correlation or causation, example 

 In forest ecological modelling some ecologists use ‘age’ 

as a dependent variable very often (e.g. Lehtonen 2005).  

 

 For example, in a whole-stand tree growth model tree 

growth can be formed as a function of time.  

 

 The volume growth of forest is positively correlated with 

age.  

 

 Clearly, age does not cause volume growth. 



Deterministic or stochastic 

 In a deterministic model an individual will be characterized 

by a set of variables.  

 

 Among the variables characterizing an individual, one 

variable that will represent a single characteristic that is 

under consideration as being a causal factor related to 

another single characteristic, a possible effect.  

 

 Given the residual states S, the presence or absence of 

causal variable C completely determines the presence or 

absence of the possible effect E in the individual I.  

 



Deterministic or stochastic, example 

 Consider an individual forest stand. Among the residual 

states of the stand are #tree, Hdom, age, BA, H100, etc.  

 To say that initial density is a positive causal factor for 

optimal thinning frequency in the stand, given its residual 

state, is to say that if the stand is given dense planting 

initially the stand will get frequent thinnings.  

 And if the stand is not given dense planting initially the 

stand will not get frequent thinnings. Vice versa.  

 Therefore, planting density is either a positive or negative 

causal factor (deterministic) for optimal thinning frequency 

in an individual forest stand.  

 The variables planting density and optimal thinning 

frequency are causally related.  



Deterministic or stochastic, example 

 There is, however, another approach. This is to assume 

that risks, such as  

 butt rot,  

 forest fire,  

 wind throw, or  

 snow break in forest management is to be 

represented  

not by deterministic,  

but by stochastic,  

or probabilistic models.  

 In such models what the value of the causal variable does 

is change the probability of the value of the effect variable.  

 



Deterministic or stochastic, example 

 For instance, butt rot is a negative causal factor 

(stochastic) for timber production in an individual tree 

(Möykkynen et al. 2000), characterized by residual state,  

 

 if the probability of timber production given butt rot is less 

than the probability of timber production given  ‘No butt 

rot’.  

 

 For a different residual state the probabilities could be 

different. 



Individuals and populations 

 For many causal relationships, for instance, those studied 

in the biometrics, it is impossible to investigate the causal 

relationship by studying just individuals.  

 

 The only way to get at the causal relationship is to study 

large groups of individuals.  

 

 So models of causality that can be applied to populations 

are needed. 



Individuals are deterministic 

 A model for causation in a population will consist of a set 

of individuals, each of which is modelled by a 

deterministic model of causation in individuals.  

 

 The basic idea is that the variables C and E are causally 

related in the population U, if there are any individuals in 

U for whom C and E are causally related.  

 

 



Individuals are deterministic, con't 

 In the original population U, the percentage of members 

exhibiting the effect E is the probability of E in the 

population U, Pu(E).  

 

 In the hypothetical population X (all individuals have C), 

the percentage is the probability of E in X, Px(E), and 

Px(E) will be greater than Pu(E).  

 

 Similarly, in the hypothetical population K (no individuals 

have C), the percentage is the probability of E in K, Pk(E), 

and Pk(E) will be less than Pu(E) (Giere, 1991). 

 



Individuals are stochastic 

 Compared to the above deterministic model of causal 

factors in populations,  

 

 if the individuals are stochastic, the only difference is that 

Px(E) and Pk(E) are no longer definite numbers,  

 

 but only averages over probabilities.  

 



Individuals are stochastic, example 

 For example, there is exactly one individual tree in a 

forest stand for which butt rot is a negative causal factor 

for timber production.  

 On a deterministic model of that one forest stand, the 

number of cases of butt rot damage in population X, all 

trees in the forest stand damaged by butt rot, will definitely 

be greater by one than the number in population U, real 

forest stand.  

 On a stochastic model of that one individual tree all we 

can say is that there is some probability that the number 

of cases of E in X will be greater than the number in U. 



Effectiveness of causal factors 

 On a deterministic model of individuals, there are only 

three grades of effectiveness:  

 positive causal factor,  

 negative causal factor,  

 and intermediate case – causal irrelevance.  

 

 On a stochastic model of individuals, there is a full range 

of degrees of effectiveness.  



Effectiveness of causal factors, con't 

 The simplest definition of the effectiveness of C in 

producing E, Ef(C,E), in an individual I,  

 is the simple difference between P(E/C) and 

P(E/Not-C) for I.  

 

 This measure has maximum value +1 and minimum value 

-1, with zero effectiveness corresponding to causal 

irrelevance between the variables C and E (Giere, 1991). 



Effectiveness of causal factors, con't 

 For a population model assuming a deterministic model 

for individuals,  

 the simplest measure of the effectiveness of a causal 

factor in population U  

 is the difference between Px(E) and Pk(E).  

 

 This measure again ranges from -1 to +1, with zero 

effectiveness corresponding to causal irrelevance (Giere, 

1991). 



Experimental and non-experimental  

 Randomized experimental designs 

 

 Prospective designs 

 

 Retrospective experimental designs 



Experimental research 

 “The experiment is a situation in which a researcher 

objectively observes phenomena which are made to occur 

in a strictly controlled situation where one or more 

variables are varied and the others are kept constant.”  

 An experimental research study is conducted for the 

researcher’s interest which is always in determining cause 

and effect.  

 The causal variable is the independent variable and the 

effect or outcome variable is the dependent variable.  

 Experimental research allows us to identify causal 

relationships because we observe the result of 

systematically changing one or more variables under 

controlled conditions. 



Non-experimental research 

 Non-experimental research is needed because there are 

many independent variables that we cannot manipulate 

(Johnson and Christensen 2000).  

 

 For example, in forest risk management one could not do 

the following experiment: Randomly assign 500 new 

plantations to experimental and control groups, where the 

experimental group must have fungi (butt rot effects) and 

the controls do not have. 

 



Non-experimental, con't 

 Nonexperimental is conducted for many reasons. The 

three most common objectives are description, prediction, 

and explanation (Johnson and Christensen 2000). 

 Descriptive nonexperimental research is used to 

provide a picture of the status or characteristics of a 

situation or phenomenon.  

 Predictive nonexperimental research is used to 

predict the future status of one or more dependent 

variables.  

 Explanatory nonexperimental research is used to 

explain how and why a phenomenon operates as it 

does. 



Randomized experimental designs 

 Because of the large number of the whole of any 

population, it is impossible to examine the whole 

population.  

 

 Thus, in scientific research a set of samples are usually 

set and then infer from the sample back to the population.  

 

 By randomly selecting a sample from the real population, 

then randomly dividing it into two groups.  

 

 Two hypothetical populations can be created from real 

samples. These two groups are experimental (x) and 

control (k) groups. 



Randomized, con't 

 In randomized experimental designs, random sampling 

occurs in two places.  

 First, the whole sample of subjects should be 

randomly selected from the whole population of 

interest.  

 Second, the division of the initial sample into 

experimental and control groups must be done 

randomly. 

 



Randomized, con't 

 Estimating the effectiveness of the causal factor is similar 

to estimating the strength of a correlation.  

 

 One simply calculates the difference between the two 

nearest and two farthest ends of the estimated intervals 

for Px(E) and Pk(E).  

 

 The resulting interval is the estimate of the effectiveness 

of the causal factor in the population (Giere 1991). 



Prospective designs 

 Unlike experimental studies, the subjects are not 

assigned to the two groups by the researchers.  

 Prospective studies are more like tests of correlations in 

that they are based on samples from the actual population 

as it exists.  

 The overall strategy in prospective studies is to get two 

groups that are, on the average, similar in every feature 

except the expected causal factor.  

 If there is a statistically significant difference in the 

frequency of the effect, then that provides evidence for the 

causal hypothesis (Giere 1991).  



Retrospective experimental designs 

 A retrospective design is backward looking – unlike both 

experimental and prospective designs, which are forward 

looking.  

 

 Random sampling plays almost no role in retrospective 

studies.  

 

 In retrospective studies, the roles of the cause and effect 

variables are reversed.  

 

 Thus, one can almost always tell when a reported study is 

retrospective. 



Retrospective, con't 

 Retrospective studies offer the frequency of the cause in 

groups with and without the effect.  

 

 There is no way to use these frequencies to estimate the 

effectiveness of the causal factor.  

 

 Therefore, retrospective studies suffer from a further 

failure to fit a random sampling model (Giere 1991). 



Experimental vs. non-experimental 

 Causal models with experimental research data are 

stronger than causal models with nonexperimental data 

(Johnson and Christensen 2000).  

 

 Giere (1991) compared the characteristics of experimental 

and non-experimental testing for evaluating causal 

hypotheses (see Table 1).  



Experimental vs. non-experimental 



Experimental vs. non-experimental 

 Randomized experimental designs provide much better 

evidence for a causal hypothesis than prospective 

designs (Giere 1991).  

 

 There is an additional disadvantage to retrospective 

studies.  

 

 The data they yield allow no estimate of the effectiveness 

of the causal factor.  

 

 Evidence for causal hypotheses based on retrospective 

data alone cannot be regarded as being as good as 

evidence based on prospective or experimental studies. 



Optimal thinning, an example 

 An optimization study of forest stand management by Cao 

et al. (2006) extend earlier research on optimal thinning 

patterns and rotation periods for even-aged Norway 

spruce stands.  

 

 The main aim of this study was to investigate how initial 

stand structures affect optimal thinning and rotation for 

even-aged Norway spruce stands.  

 



Optimal thinning, con't 

 Fig. 4 The main 

research phases for 

effects of initial states 

on optimal stand 

management  

according to the 

Guide-Dog Approach. 



Optimal thinning, con't 

 By applying Giere’s six-step program for evaluating 

causal hypotheses (Fig. 3) to the study by Cao et al. 

(2006). The six steps are: 

 Step 1. The real world population and the causal 

hypothesis.  

 The population of interest consists of simulation and 

optimization of Norway spruce stands management.  

 The cause variable is exposure to harvesting 

schedules,  

 and the effect variable is stumpage earnings.  

 The hypothesis at issue is that initial states are 

positive causal factors for stand management in the 

population of sample plots. 



Optimal thinning, con't 

 Step 2. The sample data.  

 The overall sample stands, including  

MT and OMT sites,  

 initially dense,  

medium density  

and sparse stands,  

 

show that initial states may have positive impact 

to stand management. 



Optimal thinning, con't 

 Step 3. The design of the experiment.  

 The design fits a model for prospective.  

 It is not experimental because there was no random 

division into experimental and control groups.  

 The subjects selected themselves into the categories 

of initial states, such as, initial density, age, dominant 

height, and so on.  

 All subjects were originally free of the effect, optimal 

thinning and rotation. 



Optimal thinning, con't 

 Step 4. Random sampling:  

 In this example sample stands are not random 

samples of all Norway spruce stands.  

 Within the sample stands, however, the sampling 

was randomly done.  

 There was no mention of any other variables 

controlled for in the data presented. 



Optimal thinning, con't 

 Step 5. Evaluating the hypothesis.  

 Fig. 5 exhibits a diagram of the resulting data.  

 There is good evidence that initial states is a positive 

causal factor for optimal rotation.  

 For the data, optimal rotation periods vary from 61 to 

92 years at 3% rate of interest.  

 High variation is due to sensitivity of optimal rotation 

to site qualities, initial stand structure and density. 



Optimal thinning, con't 

 Fig. 5 Optimal 

rotation period and 

average diameter at 

rotation age in MT 

sites. 



Optimal thinning, con't 

 Step 6. Summary.  

 This is clearly a careful study in line with prospective 

and random sampling models.  

 The study indicates that optimal thinning patterns 

and rotation period not only depend on site quality, 

but also initial stand characteristics.  

 Obviously, more severe tests may make stronger 

evidence in favour of the causal hypothesis. 
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